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Kinetic Equations

III. Difficulties in the Derivation of Kinetic Equations
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Die von verschiedenen Autoren bei der Ableitung von kinetischen Gleichungen festgestellten
Schwierigkeiten in Form von Sikularititen und Divergenzen konnen durch geeignete Partialsum-
mationen iiberwunden werden. Damit ist die Anwendung der Storungstheorie in der klassischen
Statistik gerechtfertigt. Aus dem Auftreten von Divergenzen wurden in der Literatur verschiedene

physikalische Schlu3folgerungen (logarithmische

Dichteabhéangigkeit der Transportkoeffizienten,

Ungiiltigkeit der Bogoljubovschen Synchronisationsannahme) gezogen. Das ist nicht gerechtfertigt,
da sich die Schwierigkeiten streng iiberwinden lassen.

1. Introduction

Using perturbation-theoretical methods in differ-
ent fields of physics difficulties will appear owing
to divergent terms of the perturbation expansion.
A detailed discussion of these difficulties shows
them to be due to the occurrence of secular terms.
The investigation in this paper concerns the per-
turbation expansion of the classical S-operator.
These difficulties may be overcome by adequate
partial summations. In principle, this is a method
to avoid the non-physical divergences also in other
fields of physics.

Already in celestial mechanics I 2 the perturbation
theory was applied by using the exactly soluble two-
body system sun-planet as a zeroth approximation
for a perturbation expansion in terms of the masses
of the other disturbing planets. In the representation
of the orbital elements by perturbation series there
occur temporal terms of the n-th order, i.e. terms
growing proportional #*. However, STErNE 2 empha-
sized that from these secularities no conclusions can
be drawn as to the long-time behaviour of the sun-
system and the stability of the planet motions. In
celestial mechanics the method of slowly variable
parameters has been used since Lagrange. In it the
motion of planets is described by weakly time-depen-
dent orbital elements. Here two essential points of
view are already indicated:

1 D. Brouwer and G. M. Cremens, Methods of Celestial Me-
chanics, Academic Press, New York, London 1961.

2 T. E. SternE, An Introduction to Celestial Mechanics, Inter-
science Publ., Inc., New York 1960.

1. Summarizing the secular terms in terms of time-
functions and

2. approximating the explicit time-dependence of
the desired quantities by an implicit time-depen-
dence with the aid of a functional dependence on

variable parameters of the undisturbed solution.

The difficulties of celestial mechanics are ana-
logous to those involved in the theory of nonlinear
vibrations 3. For instance the equation

r+o2z+ead=0 (1)

has only restricted solutions «(t), which can be re-
presented by the series
z(t) =Acos(wt+ )

A3

34% .
+e{32wzcos3(wt+¢) = Tar tsin(wt+@)| +...
(2)

with the aid of a perturbation expansion in the
small parameter ¢ >0. It is no use trying to find the
asymptotic behaviour of the solutions of (1) for
t— oo from Eq. (2). In the theory of nonlinear
vibrations the difficulties of secular terms can also
be overcome either by summing up the terms of (2)

z=Acn(VEat,K),

1 1
reges +0(), K=c;m 0 O

w2
= F
(E =energy, cn=cosinus amplitudinis) or by as-
suming the amplitude 4 and the phase-factor ¢ of
the undisturbed solution to vary slowly in time.

3 N. N. Bocorsusow and J. A. MirroroLski, Asymptotische
Methoden in der Theorie nichtlinearer Schwingungen, Aka-
demie-Verlag, Berlin 1965.
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In quantum mechanics * 3, secularities and di-
vergences also appear. So WiGNERr * started from the
free electron, treated the Coulomb potential —¢ e?/r
as perturbation, and tried to gain by this the lowest
energy-level of the hydrogen atom with £¢=1. How-
ever, it turned out that the expansion led to diver-
gent expressions in Schrédinger’s perturbation se-
ries. As Hausmann 3 showed these divergences do
not appear when the electron is treated as bound
in a large, but finite volume V. The terms of Schro-
dinger’s perturbation series become secular, i. e. the
n-th term is of the order V. Although the series
is badly convergent, the desired energy can be de-
termined as a function E(¢) of the perturbation
parameter ¢ as in Fig. 1a. However, in the limit
V — o for ¢ < 0 the lowest energy level is always
E =0, so that the function E (¢) becomes non-ana-
lytical at e=0 (Fig. 1b).

E(e) V<o E(e) V—=~o

N\ ¢

3
a) ’\b)

Fig. 1. Analytic and nonanalytic form of the function E (¢) for
finite and infinite volume.

Hausmann avoids these difficulties by summing
up the secular terms in

E=0(¢) E(¢) =0(0) E(0)
+E(O(0) E(0)+8(0) E©)+... P

preceding the limit 7/ — oo and he gets
E=6(c) |E) + 7 E©0) +...|.  (5)

In this case no divergences appear at the limit
Vo> .

Secularities of this kind also cause the difficulties
in quantum field-theory 3%, where nonphysical di-
vergences appear because of an infinite four-dimen-
sional normalization-volume. The method of re-

4 E. P. Wioner, Phys. Rev. 94, 77 [1954].
5 K. Hausmanyn, Ann. Phys. Leipzig 17, 368 [1966].
5a G. Heser and G. WeBer, Grundlagen der modernen Quan-

tenphysik, II, Verlag Teubner, Leipzig 1963. — S. O. Aks,
Fortschr. Phys. 15, 661 [1967].

6 J. V. Sencers, Phys. Rev. Letters 15, 515 [1965].

7 J. V. Sencers, Phys. Fluids 9, 1333, 1685 [1966].

8 M. S. Greex, Proc. Intern. Seminar on Transport Properties
of Gases, Brown University Press, Providence, Rhode Is-
lands 1964.
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normalization used there can be regarded as a
special kind of partial summation.

The appearance of secular terms in a perturba-
tion expansion is not restricted to a special system.
It is a general phenomenon which can be deduced
only in some special cases from a nonanalytical be-
haviour of the solutions relative to the perturbation
parameter ¢ at ¢ =0. At the corresponding limits the
divergences follow from the secularities. Their oc-
currence cannot be used for physical conclusions.
These difficulties may be overcome by the general
method of partial summation performing a “modi-
fied Taylor expansion”

fle,8) = %’ e85 [fP(et)| EM< o (6)

analogous to (5). Of course only such partial sum-
mations lead to reasonable results in which the par-
tial sums, i. e. {*) in (6), are nonsecular. This know-
ledge will be used in the following parts of the paper
for a solution of the difficulties in classical statistics
involved in the derivation of kinetic equations.

2. Secularities and Divergences in the
Perturbation Expansion of Classical Statistics

In classical statistics divergences in the derivation
of kinetic equations and the calculation of transport
coefficients 6710 have already been noticed for a
long time. Particularly Dorrman and Conen!! and
GorpBerc and Sanprr!? showed the divergences to
be caused at the limit T — oo by secular terms of the
perturbation expansion (I.3.2, 3.3, 3.5) for the S-
operator and the linked-cluster sum resp. dealt with
in the preceding paper 13

T = T 12 - .
S.=14 (—i)fde, LV, + (—i)2fde, [de, L';,L¥e,
0 0 0

oo = 7, 8/8n exp{I‘,},
«— 00—
<« 0— — o — 00—
2 4
L= | +5 1 | +z=2—"<+..
«—0—< «— e —0 —

——0——(

(7)

9 S. Fuaita, Phys. Letters A 24, 235 [1967].

10 J. M. J. vax Leuwen and A. WewLanp, Phys. Letters 19, 562
[1965].

11 J. R. Dorrman and E. G. D. Coxex, J. Math. Phys. 8, 282
[1967].

12 P.GoLpsere and G.Sanpri, Phys. Rev. 154, 188,199 {1967].

13 . Baur, P. Quaas, and K. Voss, Z. Naturforsch. 23 a, 633
[1968] ; hereafter referred to as I.
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Here the n-th term of the perturbation series for S,
again contains a secularity of the n-th order as
caused by the n time-integrations which occur there.
For an investigation of secularities SANDRI’s proce-
dure is particularly convenient, because it does not
require a transition from the phase-space-descrip-
tion of statistical mechanics to the kinetic theory of
single dynamical collisions. This transition can only
be treated exactly in the so-called pair-collision term,
because only the two-body problem is exactly soluble.
As a kinetic model the collisional events used by
Dorrman and Corex 11, SExcers 7, Haines and Dorr-
MAN, and Ernsr 4 are only an approximation for the
exact temporal behaviour of the phase-space distri-
bution.

In order to overcome the difficulties in the deriva-
tion of kinetic equations and in the calculation of
transport coefficients in (1), partial summations
may be performed as explained in the introduction.
This will be described in more detail in part 3 of
this paper. The divergence of generalized Boltzmann
terms (secularity of the quadrupole collision term)
which was found by Dorrman and Conen !! in spite
of partial summation, are presumably caused by the
fact that the kinetic considerations of dynamic col-
lisions of particles undertaken in order to evaluate
the collision-integrals are merely approximate ones.
Hence the term

n2[dx, Uy (21, 253 t) Dy (45 £) Dy (a3 ) @)
=n2[dwy[Dy (21, 253 1) — Dy (213 1) Dy(2251)]

of formula (2.9) in ! is claimed to be secular.
However, the integral with the distribution func-
tions Dy (2,23 t) and Dy (z;t) Dy (x5; ) is limited
for all times, because the functions D, and D, satisfy
the corresponding Liouville equations which follow
from formula (2.1) in 1! (vid. part 3).

The divergences found by Sencers ® 7 in the den-
sity expansion of transport coefficients also seem
to be caused by the considerations of dynamical col-
lisions for evaluating the collision-integrals, which
is inappropriate for the statistical description. How-
ever they may be possibly caused also by the special
model used (hard disks). In every case physical
14 L. K. Haises, J. R. Dorrman, and M. H. Ernst, Phys. Rev.

144, 207 [1966].

15 N. N. Bocorsusow, J. Phys. USSR 10, 256, 265 [1946] ;
english transl. in “Studies in Statistical Mechanics. I7,

Amsterdam 1961.

16 K. Kawasakr and I. OppenuemM, Phys. Rev. 139 A, 1763
[1965].
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conclusions cannot be drawn from the occurrence
of secular terms.

Thus it was deduced, that Bocorsusov’s functio-
nal assumption?® is not allowed!! and that the
transport coefficients have a logarithmic density
dependence & 716 at N =0, which causes the in-
validity of a density expansion. But according to
Fusita ® the investigations of Kawasakr and OppEx-
HEIM contain a mistake, so that there is no logarith-
mic singularity of the transpott coefficients at N = 0.
Similar facts are suggested by the experiments?
which show a linear density-dependence of the trans-
port coefficients (Fig. 2).

12 T T v T y [
. = " °
L, 75,]exper/men . i
-—— Enskog theory °® /,"
—~ 8} /7 -
@ /7
RY] 0 .27
o Va4
a | ° 47 i
° Sel”
5 £~
4t 75°Cy 0058~ T
w0057 0°C
0 L | 1 | 1 |
0 200 400 600
@(Amagats) —=
3 T T T T T T
e Q° iment °
o 75°}exper/men o
© ol ——— Enskog theory ° ///_
g o //
8 74
E I o %, T
N o e/y
< o g7
St 7% o0 3827 ‘
S o _0-*>-
= 04/}4/
~< w&%ﬁ_”_/ 0°C h
0 1 | | 1 ! i
0 200 400 600
¢(Amagats) —=

Fig. 2. Viscosity # and thermal conductivity 4 of Argon as
function of density o=m N 18,

Moreover, the results of the theory by Crapman
and Enskoc 1? for low densities agree very well with
the experimental data of Fig. 2. Hence discussions

17 N. J. Traepeniers, A. Borzen, C. A. Tex Seipam, H. R. vax
DEN BErg, and J. van Ostex, Physica 31, 1681 [1966].

18 S, A.Rice and P. Gray, The Statistical Mechanics of Simple
Liquids, Interscience Publ., Inc., New York 1965 (see Fig.
6.4.2 and 6.4.3).

19 See p. e. J. U. Hirscarerper, C. F. Curtiss, and R. Birp,
Molecular Theory of Gases and Liquids, John Wiley & Sons,
Inc., New York, London 1954, Chapters 7/8.
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of a logarithmic singularity relative to the density
cannot be exact. BocoLsusov’s functional assumption
is further justified by the fact that phenomenological
closed equations are good approximations also in
dense systems. Therefore it will be shown in part 3
that the partial summations performed in a pre-
ceding paper 2° are nonsecular, so that the program
to derive kinetic equations given there continues to
be valid.

However, in the derivation of kinetic equations
there are divergences of another kind. They are
caused by the molecular chaos in which higher dis-
tribution functions are replaced by products of one-
particle distribution functions. The integrand of col-
lision-integrals then takes the form Uy, fio—>lia f1 fo»
and with strongly singular forces the integrand be-
comes infinite at T; =Ty . This problem can be solved
either by a cut-off of the lower integration limit
r=|1;—1,| or by introducing the radial distribu-
tion function of equilibrium 2. However, these ques-
tions only refer to the numerical evaluation of the
integrals.

3. Partial Summation in Classical Statistics

All physical quantities of classical statistics can
be obtained from the reduced distribution functions
with the linked-cluster sum (I.3.7, 3.8). With the
dimensional analysis (I1.2.2) the linked graphs may
be represented by

1.0 2..a+1 0...41(

I‘t=N§ Z Z

ﬂ*)“ (N 7)1 (L)yrr’(a,ﬂ.v)
[ ? o

kT
(1)

where the dimensionless graphs I,/@#47) are of the
order one. Here N is the mean particle density, r,
the effective range of the potential u(r), u, its ef-
fective strength and 7, the characteristic interaction
time-interval of the system. GoLpBERG and Sanprr 2
already investigated what kinds of secularities mark-
ed by y appear in the terms.

When we perform the partial summation of row-
graphs in II, part 2 by summing over all a and y
we get (I1.2.8)

2...00
= 3) 4—1T'(8)
T.- S NnyT -

d

d1. " T
771...7],. 1"'""6"]1... 67]7;.

n!

dn

2...00
o>
n

20 [, Bang, P. Quaas, and K. Voss, Z. Naturforsch. 23 a, 638
[1968] ; herafter referred to as II.
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The operators Kis . .. 5, . lead to the generalized Boltz-
mann terms. Since according to I, part 5, every
functional derivation 6/87, may be replaced by a
one-particle distribution function n, ; the temporal
behaviour of the quantities

E™ =Ko, pon - nnt, (3)

has to be investigated in the limit 7— co . Analogous
to the calculations of II, part 3, it can be shown
that the K, , . are constructed as finite sums of
finite products like

ki...=expliz(ly+...+1)}
cexp{—itly.. s} ni¢,.. N1,

If the expressions in (4) are finite, non-secular
terms, the same is valid for their sums and products,
i. e. for the k™ from (2). The operator exp{iz(l, +
...+1)} is a simple displacement-operator because
of l,= —i(p,/m)(3/31,), which only causes a

transformation of variables in the function

(4)

G1...se=exp{—itly s} ni¢,. N1, (5)

In this, however, the function remains restricted so
that this operator does not cause any secularities or
divergences. The same is valid for the evolution ope-
rator exp{ —itl; s} which because of Liouville’s
theorem does not change the density of the phase-
space distribution along a trajectory and therefore
cannot lead to secularities.

We assume for all phase-space points {1...s}
the inequality

O1...8,0=N1,t,++ N5, t, S M< (6)

for the non-negative phase-space distribution g1 . 5,0
to be valid. And we assume further that the expres-
sion (5) is secular and leads to divergences at
7— oo. Then for 7, >7, with a certain 7y=17,(M)
the inequality (6) would be violated at least for one
particle-tupel {1"...s"} so that in this case

gl'...s’,n>M (7)

is valid. However, this phase-space point {1”...5",7,}
according to the Liouville equation has developed
from an initial state {1’...s", 0} for which Eq. (6)
is generally valid. Then the phase-space density
gr...s,. must have changed for this system-state.
But this is a contradiction to the Liouville theorem.

21 W. Pomee, Ann. Phys. Leipzig 20, 326 [1968].
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The conclusion to be drawn from these considera-
tions is that the operators in k; s from (4) do not
produce secularities and that accordingly the colli-
sion-terms k; _, . from (2) do not lead to diver-
gent expressions for 1— oo either. Therefore the
partial summations performed in II satisfy the con-

H. BRAETER, R. GRUNER UND G. HEBER

dition that the expressions thus obtained must be
nonsecular. On this basis it is possible to overcome
the difficulties in the derivation of kinetic equations
and also to get nondivergent expressions for trans-
port coefficients.

Bedingungen fiir das Auftreten von Ferromagnetismus in realen Gasen

H. BraeTER und R. GRUNER

Universitat Leipzig
und G. HeBer

Technische Universitdt Dresden

(Z. Naturforsch. 23 a, 648—654 [1968] ; eingegangen am 7. August 1967)

We consider a gas consisting of particles (molecules) with spin 1/2 and vanishing electrical
charge. We assume the existence of spin-dependent two-body-potentials of interaction between these
particles. Our aim is to establish conditions for the appearance of ferromagnetism in such systems.

Calculations are done for a modified Lennard-Jones-type two-body-potential. The sum-over states
is expanded with respect to cluster-integrals which are approximately calculated up to the fourth
order. Cluster of higher order seem to give only uniportant contributions to the conditions men-
tioned. The conditions for ferrmagnetism are fulfilled, if the density of the gas is higher and the
temperature lower than some critical values. The dependence of magnetization on temperature is
given and some considerations regarding the equation of state are made. It is supposed that liquids
of the same composition and interaction will also show ferromagnetism. The results seem to hold
also for potentials which are not of the Lennard-Jones-type, but have the appropriate spin-depen-

dence.

I. Einleitung

Der Ausgangspunkt fiir unsere Uberlegungen war
der experimentelle Befund, daB8 Ferromagnetismus
in Festkorpern ohne kristalline Fernordnung auftre-
ten kann 1. Das fiihrt natiirlich zu der Frage, ob auch
in Flussigkeiten eine ferromagnetische Ordnung
moglich ist. Es besteht ndmlich kein Unterschied
zwischen der Art der Anordnung der Atome (bzw.
Molekiile) in einem amorphen Festkérper und in
einer Fliissigkeit. Fiir alle bekannten Materialien
ist jedoch die Wechselwirkung, die die magnetische
Ordnung erzeugt, kleiner als die Wechselwirkung,
die die kristalline Ordnung hervorruft. Dieser Um-
stand fiihrt zu der Regel:

TCurie < T‘Schmelz s (1)

die, soweit wir wissen, fiir alle kristallinen Substan-
zen gilt. Es ist nun interessant zu untersuchen, wel-
che Art von Wechselwirkung das Auftreten der ent-
gegengesetzten Relation:

TCurie > T‘Schmelz (2)
gestattet.

Im folgenden geben wir uns solch eine hypotheti-
sche Art von Wechselwirkung vor.

Die heutigen uns bekannten mikroskopischen
Flissigkeitstheorien basieren darauf, dal man die
Theorien der Festkorper bzw. Gase (die beide selb-
staindige ausgearbeitete Theorien darstellen) im
Sinne der Beschreibung einer Fliissigkeit abandert.
Diese Naherungen sind unbefriedigend, da sie die
gleichzeitige Beschreibung aller Spezifika einer Fliis-
sigkeit nicht gestatten. Weil man schwer iiberschauen
kann, ob ein evtl. auftretender ferromagnetischer
Effekt von der Verwandtschaft der Theorie mit den
entsprechenden Festkorper- bzw. Gastheorien her-
rithrt oder nicht, haben wir die Untersuchung von
Fliissigkeiten vorerst aufgegeben und uns einem Gas-
modell zugewandt. Unsere Begriindung hierfiir ist
folgende: Wenn in einem Gas eine ferromagnetische
Ordnung méglich ist, dann wird sie sicherlich auch
in der zugehorigen Flissigkeit auftreten konnen.

1 S. Maper u. A.S. Nowick, Appl. Phys. Lett. 7, 57 [1965]. —
B. Erscuner u. H. Gir1Ner, Z. Angew. Phys. 20, 342 [1966].



